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A multivariate conditional joint probability distribution of a set of K normalized structure factors has 
been developed using a novel approach. The covariance matrix of the distribution is calculated for all 
the space groups in terms of linear combinations of specific unitary structure factors. It is shown that if 
any number of off-diagonal elements are set arbitrarily to zero, an approximation is obtained to the 
covariance matrix which corresponds to a particular set of a priori conditions. The importance of this 
result in practical phase-determining methods is pointed out. Group theory is used to obtain results 
valid for all space groups. The multivariate distribution is used to calculate more general versions of the 
Cochran and Woolfson sign probability and the Karle and Hauptman tangent formulae. 

Introduction 

The joint probability distribution of a set of K quasi- 
normalized structure factors was first introduced by 
Hauptman & Karle (1953) and developed further by 
several authors. In particular, Klug (1958) employed 
an original manipulative technique which summarizes 
all previous results. Although, as pointed out by Karle 
& Hauptman (1959), Klug's formalism is mathemati- 
cally equivalent to the previous one developed by these 
authors, it has the advantage that the joint probability 
is explicitly written in the form of a strictly asymptotic 
series in powers of N -1/2 for the case of N equal atoms 
in the unit cell. The first term of this series corresponds 
to a K-dimensional Laplace-Gauss distribution law. 
From Klug's work it follows that neglecting terms of 
order higher than the first is a good approximation if: 

(a) The number of atoms in the asymmetric unit is 
big. 

(b) The moments of order higher than the second are 
very small. This implies that the distribution of the 
E's is normal, which is equivalent to assuming the 
atoms to be randomly distributed throughout the 
asymmetric unit. 

The conditions (a) and (b), taken simultaneously, are 
equivalent to assuming the Central Limit Theorem to 
hold. 

The covarian~e matrix for the Gauss-Laplace dis- 
tribution law was given by Klug in terms of the second- 
order cumulants (mixed moments). He further stated 
that in most practical applications its off-diagonal ele- 
ments are zero. However, it turns out that when some 
specific a priori information is available, that is, when 
the concept of conditional joint probability is used, the 
elements of the covariance matrix can be proved not to 
be necessarily zero, and their values, fixed by the parti- 
cular conditions introduced into the problem, may be 
calculated. 

* Member of the Consejo Nacional de Investigaciones Ci- 
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This was first done by Tsoucaris (1970) who started 
directly by writing down a Laplace-Gauss distribution 
law for a set of normalized structure factors (E's), cal- 
culating then the covariance matrix elements on the 
basis of certain hypotheses, and assuming that a speci- 
fic set of unitary structure factors (U's) was given as 
conditions to the problem. 

The elements of the covariance matrix of the distri- 
bution are the second-order mixed moments defined by 

wheref(E1, • •. ,  EK) is the conditional joint probability 
distribution function of the set of K structure factors 
El, - . -  EK. Since f is not known (it is precisely the 
function we are seeking), the moments cannot be cal- 
culated from (1) directly. The way we overcome this 
problem is by considering the atomic coordinates rj as 
the independent variables, because some a priori distri- 
bution of them can be assumed on physical grounds. 

Any function of several structure factors can be con- 
sidered as a function of the atomic coordinates rj and 
reciprocal vectors h. In X-ray diffraction experiments 
the reciprocal vectors h are known parameters while 
the r's are unknowns. For this reason, in statistical 
interpretations of the phase problem it is convenient to 
consider the r's as random variables giving rise to cer- 
tain distributions of the structure-factor functions. But 
this, in general, will not lead to a distribution mathe- 
matically equivalent to that obtained by assuming 
fixed atomic coordinates and the reciprocal vectors h 
to be the random variables. An exception to this is the 
case in which the function of structure factors is such 
that it depends symmetrically on the r's and the reci- 
procal vector h, as it is the case for one structure fac- 
tor (Hauptman & Karle, 1953). 

This consideration will be expanded in detail in § 1, 
taking space group P I  as an example, since it forms 
the basis for the main conclusions of the present work. 

In § 2, the way of calculating the elements of the co- 
variance matrix for all the space groups is developed 
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with the aid of group theory. Specific examples for 
some particular space groups are given. 

The cor.cept c f similar reflexiov, s is introduced in § 3 
to discuss the mutual deper.dence c.f certain types of 
secor.d-order mixed moments. 

Finally, in § 4, the conditioral joint probability dis- 
tribution function is used to calculate improved ver- 
sions of the Cochran & Woolfson sign probability 
ard tl-.e Karle & Hauptman tangent formulae. 

Notation 

N =  number of atoms in the unit cell. 
n = s) mmetry number. 
t= N/n, number of atoms in the asymmetric unit. 
r=vector  ef  coordinates of the j th  atom. 
h = reciprocal vector [row matrix (h,k, 1)]. 
(~ = (G~/g~), each of the symmetry elements of a given 

space group expressed as an affine transformation 
where: G~ is the three-by-three matrix of the point 
group and g~ defir.es the translation vectcr of the 
transformation. 

Gt = [I/(u, uz, u3)] is the identity transformation, where 
1 is the unitary matrix and u~ are arbitrary integers. 

E(hs)=Ej  is a quasi-normalized structure factor= 
]Ejlexp (iq~s). 

U(h)= N-'/ZE(h) 

CS(hk) = C [ =  ~ exp (2nihd~U) . 

Note that 

E(hk)=N- ' /2  ~. ~ exp (2nihkt~,rj)= N -1/2 ~.  C j . 
j~- I c~-- I .j~ l 

1. Calculus of the second-order mixed moments. 
Space group P]  as an example 

The random character of normalized structure factors, 
E's, arises from the fact that they are continuous and 
sir gle-valued fur:ctions of the atom coordinates r~, 
which are assumed to be rar, domly and uniformly dis- 
tributed thoughout the asymmetric unit. 

The cumulative distribution function H of a set of 
K normalized structure factors may then be written as 
a 3N/n-dimensional integral: 

H(E,, .  . . E r ) = f  ! . . . I f ,  d3m"r 

= !!ASVMI"" !tm,v0(E~-~P0 "'" O(Ek-~k)f, daN/,r (1.1) 

where 0 is the Heaviside step function, .(2 is a region of 
the asymmetric unit such that for every k,~Pk(r)_<Ek 
and f ,  =f(r~.. •., rt) is the joint probability distribution 
of the atomic positions. The assumption of atoms ran- 
domly and uniformly distributed implies this function 
to be unity. ~Pk is considered as an explicit function of 

the U's to distinguish it from the fixed value of E(hk) 
denoted here simply as Ek. 

Taking all the partial derivatives in (1.1) we obtain 

fe(E,, . . . ,  EK)=~ ,KH/c3E~ . . .  OEK 

= IfASVMI" "IUN,TCS(E~--L~,)"'" ~(Er-eLr)f ,  d3N/"r, 

where f~ is the joint probability distribution function 
of El, . ' . ,  Ex and ~ is the Dirac delta function. 

The mean value of any function of the E's, L say, is 

x {f fASVMI"" IVN,~ ( E I - ~ 0 "  " "~(E~-~x)f~d3N/"r)} dKE" 

Changing the order of integration we finally obtain 

( L ) E = f I A S Y M I ' ' f U N I . r ] C r L ( E 1 , ' ' ' E K ) d 3 N / n r = ( L ) r . ( ] . 2 )  

We shall now use this formula to calculate the 
second-order mixed moments m .... u . . . .  lj . . . .  in space 
group PT. We shall later generalize the method to all 
the space groups. 

We have already pointed out that the covariance 
element a, ,  is the second-order mixed moment 
m . . . l v  . . . .  to . . . .  (Klug, 1958). So, by definition: 

apq= (EpE~)= S Sa" " SfEEpE~drE 

If we assume all equal atoms, Ep(r)=2(N) -1/2 
x ~ cos (2nhirp). Then by (1.2) i 
tTva=4(N)-ll I""" 1 ~ cos (2nhvrl)COS (21rhqr j )d3S /nr .  

Separating the terms with i= j  

( E p E : ) = I I " "  l .fr(U(hv-hq)+ U(hv+hq))d3N/"r 

x cos (2nhqrs) ] daS/"r. (1.3) 

The function between square brackets in the second 
term of the right-hand side averages zero because of 
the cosine periodicity. We assume that the introduction 
of a priori conditions does not alter essentially the con- 
stant character o f f ,  in the sense that the term 

always vanishes. 
The first integral, however, can take on different 

values according to the conditions imposed on the 
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problem. If, for instance, U(h~-h,)  is known [that is, 
if f ,  is such that U(hp--h,a) always equals U(hp--hq)], it 
is a constant that can be taken out of the integral and 
the mixed moment resulting is precisely U(hp-h~). 
More generally, the value of the mixed moment de- 
pends upon whether U(hp-hq) and/or U(hp+hq) are 
gixen or not. There exist four possibilities: 

(a) Neither U(hp-hq) nor U(hp+hq) is known. All 
integrals vanish because of the cosine periodicity. 

(b) U(hp+hq) is known. All the terms average zero, 
except the second one in the single sum. The result 
is U(hp + hq). 

(c) U(hp-hq) is known. All the terms average zero, 
except the first one in the single sum. The result is 
U(hp - h~). 

(d) Both U(hp-hq) and U(hp+hq) are known. Then, 
only the double sum averages zero and the final 
result is U(hp-  hq) + U(hp + hq). 

It is interesting to compare this result with the one of 
Hughes (1953). This author obtained what are essen- 
tially the second-order mixed moments, by averaging 
in reciprocal space under the condition that certain 
specific vectors are kept fixed during the procedure. He 
assumed the vector hp+hq to be fixed, obtaining a 
result coincident With our result (b). Had he fixed the 
vector hp-hq,  or none, he would have obtained either 
result (c) or result (a) respectively. But his formalism 
would not allow him to obtain our result (d) since fixing 
hp--hq and hpWhq simultaneously fixes completely hp 
and hq. 

This example shows that, in the way they have been 
carried out, averages in direct and reciprocal space are 
not equivalent. The physical hypothesis implied by the 
fact that a specific vector has been kept fixed during the 
averaging procedure is by no means apparent. In fact, 
our result (d) shows those hypotheses to be too re- 
strictive in the particular case we have just analysed. 

The second-order mixed moments (correlation coef- 
ficients) are calculated by Tsoucaris with the aid of 
Sayre's equation 

<E,E~, >= (E(L + Hp)E*(L + H,,)>L = U(Hp-Hq). (1.4) 

This result coincides with (1.3) in space group P1 
only, if U(Hp-Hq)  is supposed to be known. Equation 
(1.4) is symmetry independent, that is, it holds inde- 
pendently of the space group of the structure. In a 
personal communication we received while the present 
paper was in proof (Tsoucaris, 1973), it is claimed that 
full symmetry can be taken into account if, and only if, 
all numbers of each symmetry-related set are included 
in the set of E values whose probability law is to be 
found. 

2. Calculus of the second-order mixed moments 
in all the space groups 

We have just discussed the form of the covariance 
matrix for the particular case of space group PT. We 

shall now generalize this result to all space groups by a 
straightforward application of group theory. 

The covariance between the normalized structure 
factors E~ and Ej can be written 

N/n 

cr,j=(E,E~>=(N)-'< ~_. C~(C})*>, 
I=I 

+(N)-'( Z CI(C~')*>r. (2.1) 
l ¢m  

The second term averages zero because of the expo- 
nential periodicity while the first one takes different 
forms for the different space groups. To show this, we 

t(Cj may be shall first prove that the product C t 1), 
written in the form 

n 
CI(C~)*-- ~ exp (2~ih~g~)CZ(hiG~-hj). (2.2) 

From its definition we can write 

Cl(C l )* i, j -- ~ exp (2~ihi(~Jt) exp ( -2~ih jGor l ) .  
~,fl  

Applying the rearrangement theorem in the sum over 
we can write 

C l l '~,  i(Cj,  = ~ exp (2rci(hiG~-hj)Gt3rl) 

which reduces to (2.2). 
Replacing this relation into (2.1) we obtain 

N/n 
a , j =  ~ exp (2zcih,g~)((N)-l~, C'(h,G~-hj))~.  

I = 1  

The expression averaged over r is the unitary structure 
factor U(h~G~-hi) so that 

a u =  ~ exp (2rcih,g~)(U(h,G~-hj))r. (2.3) 

In this formula the mean value will be conditioned 
by the a priori information given to the problem. It 
will take on different values according to which of the 
U(h~G~-hi) are given as a priori information. 

As U(hiG~-hj) depends only on the matrices G~ of 
the point group and exp(2~zih~G~) on the translation vec- 
tors, we can write (2.3) in the form 

a , j=  ~ (U(h,G~-hj))r ~_~ exp (2rdh,gs,), (2.4) 
s t 

where Gs are the different matrices of the space group, 
and g~t are the different translations of each matrix. 

The sum over the translation vectors can be readily 
calculated with the aid of International Tables for 
X-ray Crystallography (1952). It can be seen that this 
sum is the same as accounts for systematic extinc- 
tions. 

As examples we give below the explicit form of the 
covariance matrix elements for space groups P2t, B2, 
P2Jb, P212121. 
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Space group P2,, unique axis c 

a , j = < U ( h , - h j ) > , + ( -  1)"<U(h,+hj, k ,+k j ,  l,,lj)>, . 

Space group B z 

a , j=  [1 + ( -  1)nJ+tq(<U(h,-hj))r 

+<U(h,+hj, fh+iJ,+ ij)>r). 

Space group P2x/b, unique axis c 

a,j = < U(h , -  h j) + U(hi + h j) + ( - 1)k'+ ,,[ U(h, 

+ hj, k, + ~ , t ,  + l:) + U(h, + hi, k, + kj, i, + ij)]>,. 
Space group P2,2t21 

a,j= <U(h,-hj)+(-  1y,+~,U(h,+h~,~,+kj, l,+ij) 
+ ( -  l?J+~,U(h, + hj, fq + fc~,i, + i~)+ ( -  1) ~,+ ~, 

x U(h,+h~,k~+f%i,+ i~)>,. 

We wish to thank the referee for drawing our atten- 
tion to the fact that the preceeding formalism was 
first used by Goedkoop (1950) in connexion with the 
introduction of symmetry into Karle & Hauptman 
determinantal inequalities. It is also shown in that 
paper that the matrix given by (2.3) or (2.4) is positive 
definite. 

3. Similar reflexions and correlation factors 

The reftexions of the set {G} 

{E(h,6,), ~=1,.  . .n} 

will be called similar to one another to distinguish 
them from those of the set of equivalent reflexions de- 
fined by 

{E(h,La)} = {L} 

where La are the symmetry matrices of the Laue group. 
The property of the similar reflexions which is rele- 

vant to later discussion is that they always equal one 
another except for a phase factor independent of the 
atomic coordinates, as can be readily seen starting 
from 

N/n 

E,=(N)  -'/2 ~ exp (21rihlG~rj) 
i ' - I  ~ = I  

and applying the rearrangement theorem 

E,=(N)  -'/2 ~ ~ exp (2zcih,(~t~(~,rj) 

= exp (2rdh~ga)E(h~Gtj) . 

The difference between equivalent and similar re- 
flexions arises in the case in which non-centrosymme- 
trical space groups are considered• In this case the sets 
{G} and {L} differ in that {k} contains the inversion 
matrix (accounting for Friedel's law)giving rise to a 
complex conjugation operation which is never present in 
similar reflexions. 

This can be seen by noting that if E(h~LB) is a reflex- 
ion equivalent but not similar to E(h3 then La = - IG~ 
for some G,, and 

E(h,LB)= E*(h,G,)=exp (2rdh,g,)E*(h,). 

We are now in the position to show that the elements 
of a conventional Karle & Hauptman matrix are terms 
of covariance elements rather than covariances, since 
the latter would imply the contradiction that the 
second-order mixed moments between some reflexion 
and each of two other similar reflexions could have 
different absolute values. In PT, for example, the co- 
variance between E(h) and E(h') is U ( h - h ' ) +  U(h + h') 
and coincides with the covariance between E(h) and 
E ( - h ' ) ,  E(h') and E ( - h ' )  being similar reflexions in 
this space group. If the Karle & Hauptman matrix had 
been considered, the same covariances would have been 
U(h-h ' )  and U(h+h')  respectively, which have in gen- 
eral different values• 

An important property of similar reflexions is that 
they can be arbitrarily replaced by one another in the 
distribution function• To show this, we recall the result, 
formally identical with that of Tsoucaris, 

E , ( a ) _ I E = N  (_DKn - A K + I ) / D r  

where Dr is the determinant of the covariance matrix 
and A~¢+1 is defined by 

N/,, E~ . . .  E;  . . .  E*~ 

A r + I = N  
E~ <E~E,> . . .  (E~E,) . . .  (E*KE,> 

Ej (E;xEj> " "  <Ej*Ej> . . .  (E'~Ei > 

EK (E~EK> . "  (E~EK>'."  (E~EK> . 

This determinant is identical with the Am + 1 of Tsoucaris 
in space group P 1. Multiplying the j th  column by the 
factor exp (2zcih~g,) and the j th row by exp (-2~zihtg,) 
we get 

i N/n . . .  exp(2nihjg,.)E~ . . .  E~: 

AK+,= --~1N exp (--2m"hjg,)Ej . . .  (E*Ej)  . . .exp(-2~zl 'hjg~)(E~Ej) 

Ej~ . - .  exp (27dhjg~,)(E~EK>...(E~EK> 
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which is formed with a reflexion similar to E(hj) re- 
placing E(hj). A similar reasoning applies to Dr. 

We note that in the preceding proof the fact that 
g~ is the translation of a symmetry operation has not 
been used. In fact the result holds for every arbitrary 
translation. This implies that the quadratic (hermitic) 
form 

E(a)-XE 

is a structure invariant, that is, does not depend on the 
particular origin selected. 

4. Derivation of probability formulae for centrosymme- 
trical and non-centrosymmetrical space groups 

A manipulation of the multivariate distribution func- 
tion can demonstrate its relationship to the Cochran 
& Woolfson (1955) sign probability and to the Karle 
& Hauptman tangent formula. This can be done with- 
out assuming statistical independence among the triple 
products involved. It only requires the formulation of 
the problem with some specific a priori information. We 
have already pointed out that Tsoucaris interpretation 
of Sayre's equation as the correlation coefficient be- 
tween two normalized structure factors leads to the 
conclusion, in space groups other than P 1, that similar 
reflexions can have different estimates of the correlation 
coefficient. The same applies to an equivalent interpre- 
tation of the Karle & Hauptman tangent formula. This 
situation does not appear in the derivation used in the 
present paper. 

Let us choose the a priori conditions to be such that 
the covariance matrix of the distribution law is estim- 
ated by 

U= 

0"11 0.12 " ' "  0 .1 j  " ' "  0.1K 

0"21 0.22 " " " 0 " " " 0 

0.j  b . . . 0 . . . . .  6 

0.r~ 0 . . .  O . . .  au, r 

(4.1) 

It must be realized that the appearence of null off-diag- 
onal elements in the matrix (4.1)makes its character 
not necessarily positive definite. This means that in 
this case U is not strictly a covariance matrix, but must 
rather be interpreted as an approximation to the true 
covariance matrix. Rollett & Townsend (1973) have 
pointed out that the use of a matrix with missing ele- 
ments is related to analysis of the electron density corre- 
sponding to a Fourier summation lacking some terms. 
In suitable cases such series can be expected to display 
the main features of the true electron density, but they 
need not be non-negative. 

We shall now proceed to expand the quadratic form 

E*U-XE 

for the particular covariance matrix given by (4.1). We 
shall start from the relation 

O K  
- -  - - A K +  1 

n 
E*U-1E = N  . . . . . .  Dr (4.2) 

with dr+l and Dr already defined in § 3. Only the 
terms independent of qbl, where qb, is the phase of E, 
the first component of E, will be taken into account in 
expanding (4.2), since all the others will cancel out 
when we impose normalization conditions. 

In the Appendix it is shown that 

-21GI ~ IEJ IO''J~ cos (qSt--qbj--g51j) 
E , U _ I E =  j=2 crjj 

. . . . . .  0. .  I ijI . . . .  

d = 2  ( T j j  

In the centrosymmetrical case we can write 

cos ((01- ~0j-91j)= sg (El) sg (E j) sg (El j). 
With this relation, plus the normalizing condition 

p+(Et)+p-(E~)= l 

we obtain, following Cochran & Woolfson (1955) 

(4.3) 

p+(Ex)= 12 +½ tanh 

I r E j0. ° [ 
lEvi J--~2---O'lj 

- r  70: 2, " 
- -  - ~ i j l  I 0.11-- ~ -  ~---I 

d = 2  U l j  j (4.4) 

Equation (4.4) is a modified version of the Cochran 
& Woolfson hyperbolic tangent formula. Note that the 
mixed moments (EIE~.) as given by (2.4) do appear in 
the original version of the formula, when not only the 
independent but all the reflexions are used to form the 
triple-product interactions. In the original derivation, 
however, it is assumed that all the 'interactions' are 
statistically independent. This approximation may not 
be very realistic, especially when similar reflexions are 
considered. In our present derivation it is only assumed 
that a particular set of a priori conditions is given. The 
statistical independence among triple products is auto- 
matically taken into account. (4.4) is expected, for the 
above mentioned reasons, to give more reliable proba- 
bility indications. 

In the non-centrosymmetrical case, recalling that 

P(qbl)= IEdp[lEd exp (icPl) ] 

and using formula (4.3), we see that the expression for 
p(cPl) is formally identical with (3.21) of Karle & 
Karle (1966). Then, following these authors, we end with 
the tangent formula 

tan ¢ h -  [(~ IEjI I0.1jI sin(~j_l_~ij)] 
=2 .... 0.j~ - (4.5) 

[ ~  IE~! I~,a' cos (O's+ ¢hj ] 
= 2 0 . JJ  



614 A M U L T I V A R I A T E  J O I N T  P R O B A B I L I T Y  D I S T R I B U T I O N  

In space group P l, (4.5) differs from the original ver- 
sion ov, ly in the weighting factor a2s. Of course, in 
higl~,er-symmetry space groups, o~j is no longer gixen 
by U(h l -  h2). 

We recall that our expression (4.3) is not an approxi- 
mate one in the sense that the statistical dependence 
among the different 'addition pairs' has not been v.eg- 
lected. 

We can still find a more ger:eral form of the tangent 
formula if no restriction is imposed on the amount of 
a priori information. This implies, howe~er, working 
with the inverse of the covariance matrix defined as 
(0-- l)t 2 = 0-~2; we have" 

E*0--'E = E~ ~ 0-'% + E, ~ 0-2,E7 + C 
j ¢ 1  j ¢ 1  

where C is a constant independent of 41. 
Noting that 

-1 _ 0-2,_ (0 - . ) .  (0- ) s , -  - 

we get 
K 

E*o- 'E=21EII[  ~. Io'Jl IEjl cos ( 4 , -  4 2 -  q~'J)]+ C 
2=2  

from which it follows 
K 

[ ~ la'JI lEG1 sin ( 4 2 -  4'2)] 
tan 41=  2=2 . . . .  K (4.6) 

[ ~ [o'aJl IEjl cos ( 4 2 - 4 ' 2 ) [  
j = 2  

This 'gereralized tangent formula' bears no resem- 
blance to the one obtained by Karle (1971). Again the 
present ov.e has been obtained in a more exact fashion, 
the assumption Eh---(J,,.,(h)) [formula (11) of Katie 
(1971)] being not required. 

Formula (4.6) can concentrate a great amount of in- 
formation and may perhaps prove to be useful in cases 
where other phasing procedures fail. It has the compu- 
tational disadvantage of implying matrix inversions 
but this, however, is not a fundamental objection if 
modern computing facilities are available. 

Concluding remarks 

A method for calculating the conditional joint proba- 
bility distribution of a set of normalized structure fac- 
tors has been discussed. It has been shown to contain, 
to a third-order approximation, the formulae which 
have proved to be the most successful in crystal-struc- 
ture determination. The success of these formulae lies, 
to a great exter.t, in the way information can be intro- 
duced in a step-by-step procedure. The more powerful 
higher-order formulae of the Karle & Hauptman-  
Tsoucaris t)pe lack this facility for handling the infor- 
mation because, in general, too many structure factors 
are r.eeded to be known in each step. In the present 
approach this difficulty can be partially overcome by 
the fact that the covariance matrix can be approximated 

by setting some of its elements (or terms of its elements) 
to zero, as discussed in the text. 

This approach offers also the possibility of intro- 
ducing in the calculus of the covariances, information 
concerning the physical fact that real atoms cannot 
adopt any random configuration in the asymmetric 
unit since any two of them cannot be closer than a 
known fixed distance. Since the single fact that the 
positive character of the electron-density function gives 
rise to most of the useful direct methods known at 
present, it is interesting to speculate on the possibility 
that the inclusion of the set of inequalities of the form 
Ir~-uI  >b, where b is the average interatomic bond 
distance, may lead to formulae powerful enough for 
attacking bigger structures. Investigation on these 
lines is in progress. 

APPENDIX 

Calculus of the positive definite Hermitian form 
E* U -1 E for the U matrix defined by (4.1) 

Expanding the AK+I determinant along the first two 
rows we get 

Z ~ K + I =  

l ~= { N/n E ,  (__1)(i+2)+[1+(2+12 ] 
N 2 El alj I, 

iE~ E~ 1).+z,+E 2 
+ i G .  G,2i ( -  + . + 1 .  

m 

+ terms independent of 41 .  

Noting that 0-21 = 0-,~ we finally find 

K 
E2 ff12 ( 4 1 -  42 412) AK+I=2IE~I H all - COS -- 

- N  2 = 2  2=2  0-JJ 

+ terms independent of 41 .  

Expanding the determinant of the covariance matrix 
along the first row 

K K K 

Dx= I-I ar t+ ~ 0-12(- 1)2+1( - 1)20"21 rI  G-I-! 
1=1 2=2  l = 2 0 - J J  

D K :  H o-It 0"11 . . . .  • 
l = J = 2 0-JJ 

Finally, replacing the values of d~+, and DK into the 
relation 

K 
( 1) J l"I a l l  . . . . . .  0-jr 

l = 2 0-JJ 

(_122 n 0--" E2 
l = 2 GJJ 

O K  

- -  Z]K+ 1 N n AK+' -- N 
DK D ~  

+ terms independent of 41 

formula (4.3) is obtained. 
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Molecular  Distort ion in Orthorhombic  Sulphur; a Calculation 
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A function for the intermolecular forces, based on atom-atom interactions, is used to calculate the 
distortion forces on the molecule of octasulphur in the orthorhombic structure. By making use of the 
internal force field resulting from spectroscopic studies the behaviour of the molecule under these forces 
is found. The calcalated molecular distortion agrees very well with that found by performing constrained 
refinements, except that the distortions calculated are systematically too small. This calculation shows 
that measurable distortions are to be expected for molecules with fairly low internal-mode frequencies, 
and that simple models for intermolecular forces predict the observed effect. The energy involved in 
the molecular distortion is 0.0837 kcal/mole (5.81 x 10 -22 joule/molecule). 

Introduction 

There are many examples in X-ray and neutron diffrac- 
tion experiments indicating static distortions of  mol- 
ecules in the crystal lf le  environment  compared with 
their free-state shape. In some cases the shifts in the 
atomic positior, s arc several times larger than the ex- 
perimental  errors. 

The static distortions are due to the intermolecular 
forces in which the repulsixe terms between non- 
bor, ded atoms must predominate.  If  we have a pcten- 
tial model for the interaction between these non- 
bor.ded atoms we are then able to calculate the force 
on exery atom of each molecule. The response of the 
molecule depends on the force field between the atoms 
in the molecule itself. This force field can be found by 
spectroscopic methods, as described by Wilson, Decius 
& Cross (1955) or by Cyvin (1972). 

We have made a calculation for the distortion of 
octasulphur molecules in the or thorhombic structure. 
The potential model from the lattice-statics calcula- 
tions of  Rinaldi  & Pawley (1973) is used, along with 
the molecular force field of  Cyvin (1970). 

The calculation method 

The potential between two non-bonded sulphur  atoms 
located at positions ri and rj  is assumed to be 

A 
V(r~) - + B exp ( - 0~r~j) (1) 

rt j  6 

where rij = [ r i - r j l  and A, B and ~ are constants deter- 
mined from thermodynamic  data and lattice statics 
calculations (Rinaldi  & Pawley, 1973): 

A = 2149 kcal A6/mole 
B = 199900 kcal /mole 

=3.49 A -1. 

By summing over.] we get the contribution to the crys- 
tal potential of atom i. Oaly interactions for interatomic 
distances smaller than 5/k are taken into account, as the 
contribution to the potential from more distant contact~ 
depends very little on the detailed atomic arrangement.  

The static force on the atgm i is the negative gradient 
of  the atom potential, written 

fi = - gradl Vi = - gradi ~ V(rij) (2) 
J 

where the gradient is taken with respect to the coor- 
dinates of  a tom i. 

The total force on the eight-atom molecule can be 
represented by one 24-component vector 

f=  il . (3) 

This force must be balanced by the internal force field, 
which is considered to be harmonic.  This leads to the 
equation 

f=~u (4) 


